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Abstract

Swimming ability is critical for navigating complex benthic habitats, yet the biome-

chanical strategies demersal sharks employ to modulate body and fin movements

across varying speeds remain largely unexplored. This study examines speed-

dependent kinematic patterns in the small-spotted catshark (Scyliorhinus canicula), a

benthic species with limited endurance for sustained swimming. Using high-speed

videography in a flow tank, we quantified adjustments in tail beat frequency, body

angle, wave speed and curvature across a range of speeds (0.5–6 body lengths per

second). Our results reveal that S. canicula exhibits distinct kinematic shifts as speed

increases, adopting a more streamlined posture and increasing tail beat frequency to

accommodate higher flow rates. Principal component analysis identified swimming

speed as the primary factor influencing kinematic variation, with higher speeds

necessitating more consistent body alignment and tail movement. Strouhal numbers

within the optimal range for propulsive efficiency (0.2–0.4) at intermediate speeds

(1–2 BL s�1) suggest that S. canicula maximizes energetic efficiency within this range,

although further research is required to elucidate the metabolic implications. This

study establishes a foundational framework for understanding the biomechanics of

steady swimming in a demersal shark, providing insights into the ecological and evo-

lutionary pressures shaping locomotor adaptations in benthic species.
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1 | INTRODUCTION

Sharks are a diverse group of apex and mesopredators that have

exhibited remarkable resilience in the past hundred million years

(Compagno, 1990; Guinot & Cavin, 2016). Shark morphological char-

acteristics reflect the environment they inhabit (Sternes et al., 2024).

For example, some sharks have the iconic torpedo-shaped bodies of

pelagic species, such as the great white, and seem perfectly adapted

for high-speed cruising through open waters. Their impressive swim-

ming capacity allows them to dive deeper, move poleward or venture

further offshore to effectively adjust their geographic range and avoid

hostile conditions (Braun et al., 2023; Coulon, Elliott, et al., 2024;

Hammerschlag et al., 2022; Rummer et al., 2022; Townhill

et al., 2023). In contrast, benthic species, like carpet sharks, have

evolved flattened and elongated bodies, which support a more seden-

tary and bottom-dwelling lifestyle (Klimley, 2013; Lauder & Di

Santo, 2015). Benthic sharks spend most of their time resting, punctu-

ated by brief bouts of slow, exploratory swimming along the sub-

strate. As a result, they are rarely observed sustaining steady

swimming for extended periods. Unsurprisingly, they have not been a
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common choice for laboratory-based swimming performance

experiments, which typically require prolonged, continuous swimming.

Consequently, little is known about their swimming mechanics across

a range of speeds. Studying shark locomotion presents significant

challenges due to their vast diversity in size and ecological niches,

therefore laboratory research is restricted to a few smaller species

and early life stages (Graham et al., 1990; Lowe, 1996; Sepulveda

et al., 2007; Wilga & Lauder, 2000, 2001). Additionally, discrepancies

between volitional swimming and “forced” speed-controlled flume

experiments complicate efforts to generalize findings across species

(Bernal et al., 2001; Iliou et al., 2023; Lowe, 1996; Ryan et al., 2015;

Webb & Keyes, 1982). These limitations underscore the gaps in our

understanding of shark swimming mechanics and highlight the need

for broader, more integrative approaches.

Despite these challenges, the literature provides some general

patterns of shark swimming. While propulsion is primarily achieved

through axial undulation (Maia et al., 2012), pectoral fins play a role in

cruising and manoeuvring (Hoffmann et al., 2019; Hoffmann &

Porter, 2019; Wilga & Lauder, 2000), and even contribute to creating

thrust in species such as angel sharks (Lauder & Di Santo, 2015). Dor-

sal fins assist in generating thrust and enhancing stability (Lingham-

Soliar, 2005; Maia & Wilga, 2013a, 2013b), while the heterocercal tail

is important for generating thrust and lift, and facilitating complex

manoeuvres (Lauder, 2000; Wilga & Lauder, 2002). Efficient locomo-

tion relies on the precise coordination of body and fin movements,

minimizing energy expenditure. This optimization is crucial for routine

activities and sustaining relocations in response to climate change

(Vilmar & Di Santo, 2022). While the remarkable migratory abilities of

pelagic sharks (e.g., great white sharks [Bonfil et al., 2005, Weng

et al., 2007] and basking sharks [Doherty et al., 2017, Skomal

et al., 2009]) are well-documented, how locomotor traits in benthic

sharks are modulated during steady swimming remains largely

unquantified.

The small-spotted catshark Scyliorhinus canicula L. 1758 is a small

demersal shark inhabiting the continental shelf and upper continental

slope along the eastern central to northern Atlantic coast and the

Mediterranean Sea (Ellis et al., 2009), typically found at depths of up

to 800 m (Mytilineou et al., 2005; Rodríguez-Cabello et al., 2004). This

species has been the subject of extensive biological research, making

it a model organism to study the evolution and development of

gnathostomes (Ballard et al., 1993; Berio et al., 2021; Coolen

et al., 2008; Debiais-Thibaud et al., 2015; Oulion et al., 2011; Zimm

et al., 2023). However, detailed swimming kinematics have not been

described for this species. A major reason for this gap is that

S. canicula is not a cruiser and prefers slow swimming speeds and

short bouts (West et al., 2023) over long-distance movements

(Rodríguez-Cabello et al., 2004). These behavioural traits have frus-

trated experimenters, leading them to conclude that this “relatively
inactive” species may be unsuitable for swimming studies in swim tun-

nels, as the sharks often exploit flow patterns and wall effects to sink

and “remain motionless on the bottom” (Bushnell et al., 1989; Butler

et al., 1986). Despite the challenges of measuring oxygen consump-

tion in water channels due to their limited swimming endurance,

kinematic analyses offer an alternative approach to assessing

swimming performance. By examining complete fin beat cycles, which

S. canicula consistently executes even during short swimming bouts, it

is possible to infer how these sharks sustain movement across differ-

ent speeds.

This study aimed to characterize the swimming kinematics of

S. canicula across the full range of flow speeds at which it can actively

swim in laboratory conditions. By analysing these kinematic patterns,

we seek to infer optimal swimming speeds for S. canicula and compare

these findings with existing data on other shark species. This study

provides a quantitative reference on the locomotion of demersal

sharks from temperate waters, contributing to the understanding of

swimming in benthic species.

2 | METHODS

2.1 | Sharks

Juveniles of S. canicula (females n = 2, males n = 3) ranged from 15 to

17 cm (15.8 ± 0.8 cm) in body length (BL, from the tip of the snout to

the tip of the tail). The number of specimens (n = 5) was chosen based

on a power analysis to achieve ≥0.6 power, with medium effect size

(Cohen, 2013). Sharks were obtained as embryos from the Station

Biologique de Roscoff (Brittany, France) and originated from a North

Atlantic population. They hatched and were raised in the facility at

Stockholm University under the approved Animal Ethics Protocol

(no. 11924-2020). Water in the tank was kept at 15 ±1�C and individ-

uals were fed thawed seafood every day, but fasted for 24 h prior to

the experiment.

2.2 | Experimental setup

The experiment was conducted in a 30.75-L flow tank (Loligo Sys-

tems) comprising a 4.5-L working section (23 cm length �14 cm

width�14 cm height). We captured synchronized high-speed videos

(1000 FPS; Chronos 2.1, Krontech; 24mm lens) from two orthogonal

cameras (lateral and dorsal views) of catsharks during steady swim-

ming in the working section. A 45� incline was designed to trigger

swimming in catsharks facing the incoming flow and was made of

honeycomb to ensure streamlined flow as described in previous work

(Di Santo & Kenaley, 2016). Swimming experiments were conducted

at a controlled temperature of 18�C to ensure consistency in kine-

matic viscosity (Vogel, 2013) after sharks were adjusted to the flow

tank water chemistry and temperature.

The experiment consisted of analysing one tail beat of each cat-

shark during steady swimming at 11 speeds: 0.5, 0.75, 1, 1.25, 1.5,

1.75, 2, 3, 4, 5 and 6 body lengths per second (BL s�1). The speeds

were tested in randomized order to minimize carry-over effects

(Di Santo et al., 2017). Before each experiment, individuals were mea-

sured to the closest millimetre by placing a ruler under the tank. The

length of each individual was used to calculate the flow speeds of
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interest in BL s�1. The catshark was subsequently acclimated in the

flow tank for 30 min before swimming at the selected flow speeds.

The catshark was allowed to recover in the working section at mini-

mum flow speed (< 0.2 BL s�1) for at least 5 min before experiencing

the next flow speed. We did not process the videos at 0.5, 0.75, 1.75

and 6 BL s�1 for one catshark because it was not swimming steadily

at those speeds, therefore our final dataset included 51 sequences.

2.3 | Data extraction

We extracted two-dimensional (2D) and three-dimensional

(3D) spatial coordinates from videos to characterize swimming kine-

matics during complete tail beat cycles. First, 200 2D coordinates

describing the body midline were extracted from dorsal view videos

using CurveMapper (Di Santo et al., 2021) in Matlab (vR2015a)

(Figure 1). Four 2D landmarks were further digitized with DLTdv8a

(v8.2.9) (Hedrick, 2008) on the lateral view (Figure 1b) and three of

them (2, 3 and 4) were also set on the corresponding dorsal view to

get 3D coordinates (Figure 1a).

2.4 | Description of swimming variables

The swimming kinematics of catsharks were quantified using 2D and

3D coordinates to capture key aspects of their locomotor dynamics.

Tail beat frequency (TBF), representing the number of oscillations per

second, and tail amplitude (A), the lateral displacement of the tail tip

during a complete oscillatory cycle, were measured to describe the

fundamental undulatory motions. Wave speed (c) and wavelength (λ)

were calculated to characterize the propagation and spatial periodicity

of the travelling wave along the body. Maximum body curvature

(kmax), along with its location along the body, provided insights into

the degree and distribution of flexibility during propulsion. Detailed

methodologies for quantifying these variables are available in Di Santo

et al. (2021).

As a biomechanical proxy for energetic costs of swimming, we

estimated fin effort, calculated as the product of tail beat frequency

and tail amplitude (TBF � A) following the approach of Feilich (2017).

In addition, angular parameters were examined to understand body

posture and fin movements. The three-dimensional angle of attack

(AA) was measured between the tip of the left pectoral fin and the

insertion of the left pelvic fin, providing a metric for the fin orientation

relative to the surrounding flow (Figure 1a). From lateral view coordi-

nates, the body angle (BA) was determined using the positions of the

snout tip and the pelvic fin insertion (landmarks 1 and 4, respectively,

in Figure 1b), capturing the posture of the body during swimming.

To contextualize these kinematics within hydrodynamic and ener-

getic frameworks, two non-dimensional parameters were calculated.

The Reynolds number (Re) was defined as:

Re ¼U�BL
ν

,

where U is the swimming speed in m s�1, BL is the body length in m

and ν is the kinematic viscosity of water of 1 � 10�6 m2 s�1 (Cohen &

Boyle, 2010). The Reynolds number reflects the fluid regime encoun-

tered by the catsharks. The Strouhal number (St), an indicator of

swimming efficiency, was calculated as:

St¼TBF�A
U

,

where TBF is the tail beat frequency in s�1, A is the tail amplitude in m

and U is the swimming speed in m s�1 (Triantafyllou et al., 1991). The

Strouhal number describes the relationship between oscillatory propul-

sion and forward motion. Previous hydrodynamic studies have shown

that efficient propulsion in undulatory swimmers occurs within the

optimal Strouhal range of 0.2–0.4 (Taylor et al., 2003; Triantafyllou

et al., 1991), which corresponds to the most effective vortex shedding,

where thrust production is maximized and energy loss due to excessive

wake turbulence is minimized. When St is too low (< 0.2), propulsion

efficiency decreases because the tail beats are too slow relative to for-

ward speed, leading to weak vortex formation and reduced thrust. Con-

versely, when St is too high (> 0.4), excessive tail beating creates

unsteady wake patterns, increasing drag and reducing net efficiency.

Together, these variables provide an assessment of the kinematics and

hydrodynamics underpinning catshark locomotion.

F IGURE 1 Data retrieved from
(a) dorsal and (b) lateral views of
Scyliorhinus canicula swimming at
different speeds. Green, body midline.
Gold, landmarks: 1, tip of snout;
2, insertion of left pectoral fin; 3, tip of
left pectoral fin; 4, insertion of left
pelvic fin. AA, angle of attack in three
dimensions; BA, body angle in two

dimensions. The scale bar is 1 cm.
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2.5 | Data analysis

The fin effort, angle of attack and body angle were computed with

our custom code and the remaining swimming variables were com-

puted with the R code published by Goerig et al. (2021). First, we per-

formed a principal component analysis (PCA) on independent

swimming variables to visualize the structure of S. canicula swimming

characteristics by speed and the grouping of variables. Then, for each

kinematics variable, we tested for the homogeneity of variances with

Levene's tests and data normality with Shapiro–Wilk tests. When

both tests did not reject H0, we subsequently looked for differences

across speeds using repeated measures analysis of variance (ANOVA)

models eventually followed by pairwise post-hoc comparisons with

Tukey adjustment. When conditions of homoscedasticity or normality

were not met, we used alignment ranks transformation ANOVA (ART

ANOVA) eventually followed by post hoc contrast tests with Tukey

adjustment. Data pre-processing, statistical tests and renderings were

performed with R (v4.2.1) (R Core Team, 2022). In addition to R base

packages for statistics, we used the emmeans package (v1.8.3)

(Lenth, 2022) for pairwise comparisons and the ARTool package

(v0.11.1) (Kay et al., 2021) for ART ANOVAs. The significance thresh-

old for statistical tests was set to 0.05.

3 | RESULTS

Sharks adjust both their body posture and tail fin movements as they

increase swimming speed. Specifically, they reduce their body angle,

adopting a more horizontal position, while simultaneously increasing

their tail beat frequency. The PCA analysis showed that the first two

axes contain 65.3% of the total variance and the main axis relates to

S. canicula swimming speed (Figure 2), suggesting that speed is the

main driver in the changes in posture and kinematics observed in this

shark. In particular, four variables contribute the most to the main axis

(contribution > 10%) and are structured into two groups: body angle

on the one hand (18.7% contribution to the main axis) and tail beat

frequency, Reynolds number and wave speed (21.4%, 21.2% and

20.7% contribution to the main axis, respectively) on the other hand.

Furthermore, variables within those two groups are negatively

correlated, meaning, for example, that S. canicula displays a lower

body angle at high tail beat frequencies, which also occurs as swim-

ming speed increases (Figure 2).

The variables contributing the most to the second axis are the

maximum body curvature, the angle of attack and the body angle

(62.0%, 13.6% and 10.9%, respectively). In addition, the maximum

body curvature and the angle of attack are negatively correlated with

each other (Figure 2).

Across speeds, we found significant differences in tail beat fre-

quency (repeated measures ANOVA, F(10,36) = 11.51, p < 0.001) and

wave speed (repeated measures ANOVA, F(10,36)=13.63, p < 0.001),

with both variables displaying similar values across 0.5 to 2BL s�1

(Figure 3a,c and Table 1).

We reported no statistical differences in tail amplitude (ART

ANOVA, F(10,36) = 1.76, p = 0.104; Figure 3b) and maximum body

curvature (repeated measures ANOVA, F(10,36) = 0.92, p = 0.527;

Figure 4b) across speeds.

Furthermore, the location of maximum body curvature was not

significantly impacted by speed (repeated measures ANOVA,

F(10,36) = 1.88, p = 0.080). Nevertheless, we highlight the high varia-

tion of maximum curvature location along the body between 0.5 and

F IGURE 2 Projection of descriptive variables of Scyliorhinus canicula swimming at different speeds on the two principal axes of a principal
component analysis. The main axis of variation relates to swimming speed and is primarily driven by body angle, tail beat frequency, Reynolds
number and wave speed, while the second axis of variation is shaped by body curvature, angle of attack and body angle. AA, angle of attack; BA,
body angle; TA, tail amplitude; MC, maximum body curvature; MCL, location of maximum curvature along the body; Re, Reynolds number; TBF,
tail beat frequency; WS, wave speed. BL, body length.
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2 BL s�1 (except for 1.5 BL s�1), while it is restricted to the very tip of

the tail when catsharks swim at 3 BL s�1 and faster (Figure 4c). Body

angle decreases with speed (ART ANOVA, F(10,36) = 12.48,

p < 0.001), with a high variation of values at 0.5 and 1BL s�1

(Figure 4a and Table 1). Fin effort was also statistically different across

speeds (repeated measures ANOVA, F(10,36)=7.13, p < 0.001) with a

F IGURE 3 Swimming kinematics in Scyliorhinus
canicula swimming across 11 speeds. (a) Tail beat
frequency is similar across speeds from 0.5 to 2 BL s�1

and increases linearly beyond 2 BL s�1. (b) Tail
amplitude is variable and shows no general trend
across speeds. (c) Wave speed follows a similar pattern
as tail beat frequency but increases by steps, from 2 to
3 BL s�1 and 4 to 5 BL s�1. On each box, the
horizontal line represents the median, whisker lines

show the location of the minimum and maximum
values, and triangles are outliers. BL, body length.
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minimum around 1BL s�1 (Figure 5). Finally, we found no significant

differences in wavelength (repeated measures ANOVA, F(10,36)=1.56,

p=0.159) and angle of attack (repeated measures ANOVA,

F(10,36)=0.89, p=0.555) across speeds.

We also report that tail beat frequency increases when swimming

at speeds beyond 2 BL s�1. In contrast, wave speed increases in two

distinct phases: first between 2 and 3 BL s�1 and then between 4 and

5 BL s�1 .

Strouhal numbers within the optimal range for propulsive effi-

ciency (0.2 < St < 0.4) correspond to swimming speeds of 1–2 BL s�1

in S. canicula (Figure 6) (Taylor et al., 2003; Triantafyllou et al., 1991).

This result indicates that these intermediate speeds are the most effi-

cient for minimizing energy expenditure while maximizing propulsion

for this species.

4 | DISCUSSION

Quantifying the swimming kinematics of benthic sharks, such as Scy-

liorhinus canicula, is essential for understanding how these species

navigate structurally complex habitats while maintaining stability and

manoeuvrability (Di Santo & Goerig, 2025). Unlike pelagic sharks,

which are adapted for efficient, sustained cruising, benthic sharks

exhibit slower, less regular swimming bouts that reflect the demands

of their demersal lifestyles. While these traits are ecologically signifi-

cant, they also pose challenges for studying locomotion under con-

trolled laboratory conditions, where steady locomotion is required

(Butler et al., 1986; West et al., 2023). To address these challenges,

we employed a swim tunnel with a honeycomb ramp to minimize flow

disturbances and facilitate steady swimming, an approach described

by previous studies on benthic batoids (Di Santo et al., 2017; Di

Santo & Kenaley, 2016). This methodology allowed us to obtain high-

resolution kinematic data across a wide range of swimming speeds,

offering new insights into the biomechanical strategies underlying

benthic locomotion.

Nevertheless, it should be noted that the challenge of having

S. canicula swimming steadily has limited our sample size (n = 5) and

the use of a single tail beat to characterize the kinematics of each

specimen at each speed. Using a single complete cycle of movement

during steady swimming has, however, already proven relevant to

describe a fish's swimming kinematics (Di Santo et al., 2017). When

possible, analysing multiple tail beat cycles per fish and speed would

be beneficial to refine the amount of intraspecific variation in kine-

matics values.

Our experiments revealed that S. canicula swims across a range

of speeds from 0.5 to 6 BL s�1, exhibiting distinct kinematic adjust-

ments as speed increases. At the lowest speeds (0.5–0.75 BL s�1),

individuals struggled to maintain position in the water column, fre-

quently trying to rest on the bottom. This struggle likely reflects the

species' reliance on benthic interactions, which are known to reduce

energy expenditure through hydrodynamic effects such as drag

reduction and lift enhancement (Gerstner & Webb, 1998;

Triantafyllou et al., 2000). Since our experimental design required

sharks to swim off the substrate, the lack of these benefits may

have influenced kinematics at low speeds (Di Santo et al., 2017).

Despite the observed preference for slow swimming in natural con-

ditions (West et al., 2023), our results indicate that S. canicula

achieves its most efficient swimming at intermediate speeds (1–2

BL s�1). Within this range, Strouhal numbers fell within the optimal

range for propulsive efficiency (0.2 < St <0.4) (Taylor et al., 2003,

Triantafyllou et al., 1991). These findings suggest that while

S. canicula frequently operates at low speeds in the wild, its biome-

chanical efficiency for steady swimming peaks within this intermedi-

ate range, similar to patterns observed in other undulatory

swimmers (Di Santo et al., 2017; Di Santo & Goerig, 2025; Wilga &

Lauder, 2000).

At speeds below 2 BL s�1, we observed high variation in

kinematic patterns, likely due to reduced hydrodynamic stability.

Insufficient thrust and lift generation at these speeds may make main-

taining a steady posture more challenging, resulting in increased

TABLE 1 Kinematics with post hoc differences across speeds.

Speed (BL s�1) TBF (Hz) Wave speed (BL s�1) Fin effort (BL s�1) Body angle (degrees)

0.5 2.17 ± 0.38 (a, b) 1.12 ± 0.32 (a) 0.44 ± 0.11 (a, b) 39.4 ± 11.5 (a)

0.75 2.04 ± 0.39 (a) 1.11 ± 0.20 (a) 0.41 ± 0.08 (a,b) 44.6 ± 2.15 (a)

1 2.32 ± 0.47 (a,b) 1.21 ± 0.31 (a,b) 0.37 ± 0.02 (a) 39.6 ± 9.95 (a,b)

1.25 2.20 ± 0.29 (a,b) 1.25 ± 0.37 (a,b) 0.41 ± 0.07 (a) 41.9 ± 3.18 (a)

1.5 2.20 ± 0.20 (a,b) 1.24 ± 0.15 (a,b) 0.44 ± 0.08 (a,b) 39.0 ± 3.41 (a,b)

1.75 2.49 ± 0.35 (a,b,c) 1.33 ± 0.11 (a,b) 0.48 ± 0.07 (a,b,c) 39.0 ± 4.53 (a,b)

2 2.44 ± 0.32 (a,b,c) 1.37 ± 0.17 (a,b) 0.46 ± 0.12 (a,b) 34.8 ± 3.47 (a,b,c)

3 3.00 ± 0.38 (b,c,d) 1.71 ± 0.31 (b) 0.50 ± 0.02 (a,b,c) 28.5 ± 3.99 (b,c,d)

4 3.24 ± 0.45 (c,d) 1.74 ± 0.36 (b,c) 0.57 ± 0.08 (b,c) 23.5 ± 3.22 (c,d)

5 3.77 ± 0.68 (d) 2.32 ± 0.34 (c,d) 0.63 ± 0.07 (c) 19.2 ± 1.51 (c,d)

6 3.66 ± 0.25 (d) 2.52 ± 0.35 (d) 0.57 ± 0.04 (b,c) 14.0 ± 3.34 (d)

Note: Results are reported for each speed as mean ± standard deviation. Different letters represent a significant difference across speeds.

Abbreviations: BL, body length; TBF, tail beat frequency.
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variation. Conversely, at higher speeds (> 3 BL s�1), biomechanical

precision becomes increasingly important, as greater hydrodynamic

forces necessitate controlled body postures to minimize resistance

(Di Santo et al., 2021; Webb & Keyes, 1982). The upper speed limit

for steady swimming in juvenile S. canicula appears to be 6 BL s�1, at

least in laboratory settings.

Comparing our results to previous work highlights a key distinc-

tion between preferred and optimal swimming speeds. West et al.

F IGURE 4 Swimming kinematics in Scyliorhinus
canicula swimming across 11 speeds. (a) Body angle is
highly variable at 0.5 and 1 BL s�1 and decreases
linearly with speed. (b) Maximum body curvature is
variable and shows no general trend across speeds.
(c) Location of maximum curvature along the body is
highly variable across speeds from 0.5 to 2 BL s�1 but
restricted to tail tip at 3 BL s�1 and beyond. On each
box, the horizontal line represents the median, whisker

lines show the location of the minimum and maximum
values, and triangles are outliers. BL, body length.

BERIO ET AL. 7FISH



(2023) reported that S. canicula typically swims at speeds below

0.54 BL s�1 in voluntary conditions, with a median of 0.38 BL s�1. By

contrast, our study identified 1–2 BL s�1 as the most efficient range

for minimizing energy expenditure per unit distance travelled. Pre-

ferred swimming speeds reflect an individual's immediate

behavioural and ecological demands, while optimal speeds, typically

determined through respirometry, are those that minimize oxygen

consumption per unit distance travelled (Tudorache et al., 2013). Since

S. canicula cannot sustain prolonged steady swimming, making direct

metabolic measurements impractical, we inferred its optimal speeds

using kinematic proxies such as tail beat frequency and fin effort. A

similar approach in the little skate (Leucoraja erinacea) identified mini-

mal body angles and metabolic rates at intermediate speeds,

reinforcing the idea that optimal performance does not necessarily

occur at the lowest speeds a species can achieve (Di Santo

et al., 2017). Our results suggest that S. canicula follows a comparable

pattern, with kinematic efficiency peaking within the 1–2 BL s�1

range. However, swimming performance varies widely among shark

species, often reflecting ecological and morphological adaptations. For

example, species such as blacktip reef sharks (Carcharhinus melanop-

terus) and bonnethead sharks (Sphyrna tiburo) achieve optimal Strouhal

numbers at slower speeds (closer to 0.8 BL s�1) (Eloy, 2012; Kajiura

et al., 2022), reflecting adaptations for continuous swimming in the

water column. In contrast, kinematic efficiency peaking at higher

speeds in S. canicula aligns with a benthic lifestyle characterized by

alternating short swimming bouts and resting on the bottom. Further-

more, high variation in tail beat frequency and other kinematic param-

eters at low speeds, as observed in S. canicula, has also been reported

in other benthic and slow-swimming species, such as the Caribbean

reef shark (C. perezi) (Kajiura et al., 2022). By contrast, obligate ram

ventilators like the blacktip shark (C. limbatus) exhibit strong correla-

tions between tail beat frequency, amplitude and swimming velocity

(Kajiura et al., 2022). These differences reflect the distinct biomechan-

ical and morphological strategies sharks use to meet the demands of

their respective habitats.

Our findings also highlight the potential limitations of swim tunnel

studies in capturing natural behaviour. While controlled experiments

allow precise quantification of kinematics, they do not fully replicate

the complexities of free-swimming conditions. Spatial constraints can

induce gait transitions at lower speeds than observed in the wild, and

fish often reach higher critical swimming speeds in larger flumes or

raceways (Kern et al., 2018; Tudorache et al., 2007). Integrating labo-

ratory and field studies, such as using bio-loggers and large-scale

flumes in natural settings, will be crucial for bridging these gaps

(Gallagher et al., 2021; Payne et al., 2015).

Steady swimming performance is closely linked to ecological

function, influencing behaviours such as foraging, predator avoidance

and habitat selection (Ryan et al., 2015; Walker & Westneat, 2002;

Weihs, 1977). Many shark species undertake seasonal migrations

driven by reproductive and foraging needs, with pelagic species cover-

ing vast distances (Bonfil et al., 2005; de la Parra Venegas

et al., 2011). While benthic sharks like S. canicula are less mobile, our

findings suggest they can sustain efficient swimming at speeds suit-

able for small-scale movements, such as relocating within their home

range.

In the face of climate change, locomotor capacity may play a cru-

cial role in species' ability to cope with environmental shifts. Highly

mobile sharks can migrate to locate suitable habitats, but species with

strong site fidelity, like S. canicula (Rodríguez-Cabello et al., 2004),

may rely more on physiological tolerance to changing conditions

(Coulon, Elliott, et al., 2024; Di Santo, 2024). Nevertheless, extreme

environmental stressors, such as warming and ocean acidification, can

still disrupt normal swimming behaviour, potentially impairing foraging

efficiency and predator evasion (Coulon, Pilet, et al., 2024; Di

Santo, 2015, 2016; Green & Jutfelt, 2014). Understanding how swim-

ming mechanics interact with these environmental factors will be

F IGURE 5 Fin effort (tail beat frequency � tail amplitude) across
swimming speeds in Scyliorhinus canicula showing a minimum value at
1BL s�1. On each box, the horizontal line represents the median,
whisker lines show the location of the minimum and maximum values,
and triangles are outliers. BL, body length.

F IGURE 6 Strouhal number as a function of the Reynolds
number, with an indication of the swimming speed in body length per
second in Scyliorhinus canicula. The optimal range for propulsive

efficiency is defined by dashed lines and corresponds to swimming
speeds from 1 to 2 BL s�1. BL, body length.
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essential for predicting the resilience of benthic sharks under future

ocean conditions (Di Santo, 2022; Vilmar & Di Santo, 2022).

This study provides the first comprehensive analysis of speed-

dependent kinematics in S. canicula, revealing that while this species

prefers slow swimming in the wild, its most efficient swimming occurs

at 1–2 BL s�1. This optimal range aligns with broader patterns

observed in undulatory swimmers and highlights the importance of

considering both preferred and optimal speeds when assessing loco-

motor performance. Future research integrating kinematic, metabolic

and ecological data will be critical for advancing our understanding of

benthic shark locomotion and its role in shaping species resilience in a

changing ocean.

5 | CONCLUSIONS

This study quantifies the swimming kinematics of Scyliorhinus canicula,

providing new insights into the biomechanical strategies that underpin

benthic shark locomotion. Our findings reveal distinct speed-

dependent adjustments in body posture and tail movements,

highlighting the challenges S. canicula faces in maintaining stability at

low speeds. Using kinematic proxies, we infer that this species

achieves its most efficient swimming at intermediate speeds, aligning

with broader patterns observed in fish locomotion (Di Santo

et al., 2017).

Future research integrating kinematic analyses with muscle activ-

ity monitoring, energetics and hydrodynamic modelling could further

elucidate the energetic trade-offs between benthic and pelagic loco-

motion (Jayne & Lauder, 1995). Investigating how environmental

stressors, such as rising temperatures and ocean acidification, affect

swimming performance would provide critical insights into the resil-

ience of S. canicula to climate change. Additionally, exploring ontoge-

netic shifts in fin morphology, body flexibility and predator–prey

dynamics could refine our understanding of how locomotor capacity

changes and influences the ecological roles of demersal sharks in

ecosystems.

By linking biomechanics to ecological function and environmental

pressures, this study underscores the importance of locomotor perfor-

mance in shaping survival strategies and ecological interactions in a

changing ocean (Di Santo, 2022; Vilmar & Di Santo, 2022). These find-

ings provide a foundation for future research into the complex inter-

play between physiology, behaviour and environmental adaptation in

benthic elasmobranchs.
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